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Abstract. We study the entropy of dimers on a semi-infinite M x N square lauice (N -r m) with 
lanice interaction energy per dimer and nearest-neighbow interaction energy ~ 2 .  Numerical 
computations bgsed on recursive transfer matrices show that for M = 1, 2. 3, 4 and 5, and 
under certain conditions, the constanf-fl2 curves of the entropy as a function of the coverage 81 
and the fraction 8; of the maximum number of possible nearest neighbours. merge into a single 
curve forming arches that meet at cusps. At the highzst points of these arches, the interaction 
energies are in the ratio of small whole numbers. Based on the analysis of the configurations at 
the cusps, we extrapolate the results to the infinite hlo-dimensional lattice (M = m) and obtain 
the location of at least two cusps. The first cusp occurs at 01 = 112, 0; = 0 and zero entropy, 
and the second at 6'1 = 213.8; = 219 and an entropy of 0.102. 

1. Introduction 

Dimer statistics has been a fascinating and intriguing problem for decades [I]. Applications 
include the study of a lattice gas, the king problem and the adsorption of diatomic molecules 
on surfaces. A comprehensive review of this work may be found in the excellent book by 
Baxter [Z]. The thermodynamics of dimers on periodic lattices may be obtained from 
the knowledge of the occupational degeneracy of dimers partially covering the lattice 
[3,4]. Studies at full coverage were made for periodic [5] and aperiodic [6] lattices 
using exact and approximate methods; others included dimers on 2- and 3-dimensional 
arrays, with and without orientation-dependent energies [7]. Recursive relations for the 
composite occupational degeneracy were obtained for dimer-dimer and vacancy-vacancy 
nearest neighbours, on lattices of one and two strips of N sites [SI. 

An M x N square lattice has N horizontal rows each containing M sites. Dimers occupy 
two nearest-neighbour sites and can be vertical or horizontal; but a site cannot be occupied 
by more than one end of a dimer. The only interaction energies are those between a dimer 
and the lattice~(p,), and between two nearest neighbour ends of two dimers (p.2). We 
present a method of obtaining the partition function of this system of dimers in terms of the 
eigenvalues of a transfer matrix, T(M) ,  whose~rank depends on the width M of the lattice. 
In the thermodynamic limit ( N  + 00). the partition function is shown to depend only on 
the largest eigenvalue of T(M). The knowledge of T(M) provides all the thermodynamic 
properties of the system. 

Let XI and xz be the absolute activities associated with the interaction energies p1 and 
PZ. namely, 
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where ke is Boltzmann's constant and T the absolute temperature at equilibrium. The width 
M of the lattice is kept fixed, its length N is allowed to vary and, in the thermodynamic 
limit, it becomes infinite. The degeneracy Al(q.  b, M ,  N )  is the number of ways q dimers 
with b nearest neighbours can be distributed on the M x N lattice and depends on M. 
However, the M-dependence will not be made explicit in either the degeneracy or any of 
the derived quantities. The grand canonical partition function of the system is 

AN (xi, ~ 2 )  =~ Ai (4, b, N ) x ~ x , ~  (1.2) 

(1.3) 

q.b 

and the partition function follows as 
l j M N  ZN(XI, xz) = [ A ~ ( x i  *z)1 

with its thermodynamic limit given by 

(1.4) LIMN Z N ( X [ , x z )  = lim Z N ( X ~ , X ~ )  = lim [AN(xI,xz)] . 
N-tW N-m 

The average number ( 4 )  of dimers at equilibrium is 

and the fraction 6'1 of lattice sites occupied by dimers is 

Similarly, with ( b )  representing the average number of neafest neighbours, one defines &, 
as 

This quantity is in the range [OI ( 3 M - 2 ) / M ] ,  thUs,~@z'= [M/(3M-2)]&, is normalized and lies 
in the range [0,1]; it represents the fractioii of the maximum number of nearest neighbours 
obtained at full coverage. The entropy per site divided by Boltzmann's constant (hereafter 
referred to as entropy) is then given by: 

S N  = In& - $8, lnxl - $3,lnx2 (1.8) 
and its thermodynamic limit is denoted S. For given values of XZ. the entropy reaches an 
extremum when its derivative with respect to XI is zero. This OCCUTS when the interaction 
energies are related according to: 

(1.9) L L ~  + (aez/ael),pz = 0. 
Section 2 summarizes the general method [4] of obtaining the partition function for any 

width M. Section 3 describes the construction of the transfer matrix T(1) and discusses 
the one-dimensional results ( M  = I). In particular, constant p2 curves of the entropy as a 
function of the coverage exhibit a cusp at the 2/3 coverage. Section 4 shows the extention of 
the one-dimensional technique to obtain the transfer matrix T(2) .  In Section 5 we obtain a 
recursive construction of T(M)  for any M > 2. Section 6 describes a numerical technique 
in calculating the relevant thermodynamic quantities and analyses numerical results for 
M = 2 , 3 , 4  and 5. Several new cusps are discovered and 6'2' is found to be linearly related 
to 6'1 in the regions between them. The subsequent relations derived between the interaction 
energies at the maxima of the entropy between the cusps are numerically verified. Section 
7 is a study of the configurations at these cusps; it presents an extrapolation of the results 
to the infinite two-dimensional lattice. Section 8 gives the summary. 
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2. Partition function 

'Resbicted' or 'truncated' [4] M x N lattices are obtained by restricting the occupation of 
one or more sites in the first row. Subscript t is used to enumerate lattices: the lattice 
for which no restriction is placed on the occupation of the first row is t = 1. With the 
degeneracy A&, b, N )  we associate the generating function G,(x; ,  xz, y): 

By developing 1inearly.coupled recursive relations among the A,s, closed-form expressions 
for the generating functions are obtained as a ratio of two finite polynomials, H&q, XZ. y )  
and D ( X I . X Z ,  y )  [3,4]. The polynomial D(xl,~xi,y) appearing in the denominator is the 
same for all Gfs. The generating function related to the grand canonical partition function, 
A N ( x I , x ~ ) ,  is the one associated with the unrestricted lattice; it is given by 

The power-series expansion of [ I  - y R j ( x l ,  xz)]-'~yields 

(2.5) 

In this summation, as follows from equation (2.2), the grand canonical partition function is 
the coefficient with y N .  Thus, 

and the padition function in the thermodynamic limit follows: 

(2.7) 
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3. The one-dimensional problem 

In the one-dimensional problem (M = 1 ) .  there are three restricted lattices. Figure 1 
provides a diagrammatic construction of recursive relations among the corresponding 
degeneracies: The lattice is represented by N square cells, the center of each representing 
a lattice site. An unmarked cell corresponds to an unspecified state of occupation; a cell 
marked by a non-shaded circle is restricted to be vacant; and a cell marked by a shaded 
circle and a ‘tail’ specifies one end of a dimer occupying that cell, with the tail pointing 
in the direction of its other end. For the unrestricted lattice, there is only one arrangement 
with no dimers and no nearest neighbours, irrespective of the number of sites (including 
N = 0). so that 

A l ( O , O , N ) = l  for N > 0 .  (3.1) 

In figure I ( Q ) ,  A I (q, b. N )  is represented by a lattice with all its cells left unmarked. The first 
cell can be either vacant or occupied by one end of a dimer. Thus, A1 (q, b, N )  is the sum of 
the number of arrangements with the first cell vacant, and the number of arrangements with 
the first two cells occupied by a dimer. In the first case, a vacancy cannot lead to a dimer- 
dimer nearest neighbour; and on the remaining N - 1 cells. the number of arrangements 
of q dimers with b nearest neighbours is the same as A l ( q ,  b, N - 1). In the second case, 
a cell occupied by a dimer may lead to a nearest-neighbour configuration, and we label 
f = 3 the lattice having N - 1 cells, with its first cell occupied by the top of a dimer. 
Thus the number of arrangements in this second case is the same as that of q - 1 dimers 
with b nearest neighbours on a restnced lattice of type t = 3 and having N - 1 cells, or 
A3(q - 1,  b, N - I ) .  The first recursive relation valid for N > 1 is established (figure l(a)) 
as 

(3.2) A i ( q ,  b, N )  = A i ( q , b ,  N - I)  + A3(q - 1 ,  b ,  N - 1 )  

with the initial conditions 

A,(O,O,O) = O  A 3 ( - 1 . 0 , 0 )  = O  A 3 ( 0 , 0 ,  N )  = 1 f ~ r N  1. (3.3) 

The number of arrangements A 3 ( q ,  b, N )  shown in figure l ( b )  is the same as the number 
of arrangements of q dimers on a lattice having N - 1 cells so that undemeath the first cell 
there lies the top of a dimer. This restricted lattice is labelled t = 2, and a second recursive 
relation 

A3(q ,  b, N )  = A z ( q ,  b, N - 1) 

is obtained, valid for N I ,  with the initial conditions 

(3.4) 

Az(O,O, N )  = 1 for N 2 0. (3.5) 

Figure l ( c )  presents the recursive relation for A&, b, N ) .  This number is the sum of 
the degeneracy with the first cell vacant, or A l ( q ,  b, N - 1). and the degeneracy with the 
first two cells occupied by a dimer with its lower end neighbouring the top of a dimer. This 
last degeneracy is equivalent to A 3 ( q  - 1, b - 1, N - I), and a third recursive relation valid 
for N > 1 is established 

(3.6) A2(q ,  b, N )  = A l ( q ,  b, N - 1 )  + A3(q - 1 ,  b - 1. N - 1). 
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N-1 

( I C 1  

t t t 
A 2  (q.b.N) A ,  1q.b.N-11 A 3  (q1 .b-1 ,N-1)  

Figure 1. Diagrammatic representation of the recursive relations among the occupational 
degeneracies of dimers on the restticled lattices for the one-dimensional problem. 

We associate with the above three restricted lattices three generating functions as 
specified by equation (2.1). We multiply both sides of each of equations (3.2), (3.4) and 
(3.6) by the quantity i:n,hyN. For given values of N ( N  > 1) and 4 (4 < integer part of 
N/2), we sum over all possible values of b. Then we sum over all possible values of 4, 
keeping N fixed, and finally sum over N. These operations yield [4] 

GI - 1 = Y C I  + X I Y G ~  Cz - 1 = ?GI + X ~ X Z Y G ~  G3 = yG2 (3.7) 

which leads to the matrix formulation 

where Q is the 3 x 3 matrix and G is the column matrix whose elements are the generating 
functions. It then follows that GI  is the ratio of two polynomials, H~(xl,nz, y). which is 
the sum of the cofactors of matrix elements Qll  and Q12, and D ( x ~ , x z ,  y ) .  which is the 
determinant of Q, namely, 

D ( x I , x ~ , Y )  =XI(XZ- l)y3 -x ixzy2  - y t 1. (3.9) 
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The partition function is therefore obtained in terms of the z-roots of D ( x l , x 2 ,  l / z )  and, 
as expected, one recovers the cubic equation giving the solution of the one-dimensional 
system. A different formulation is achieved by observing that Q is the sum of the identity 
matrix and a matrix whose elements have y. as a common factor, namely, 

(3.10) 

(3.11) 

and, with z = I/y and I representing the identity matrix, we obtain 

{ T ( l ) - e Z ]  = G2 = - - z ~  . (3.12) Cl [:I 
The z-roots of D ( x l , x z ,  l /z)  providing the partition function of the system are the 
singularities of the generating functions. According to equation (3.12). these singularities 
are the solutions of 

det(T(I) - 2 1 )  = 0. (3.13) 

The problem is reduced to obtaining the eigenvalues of T(1). The derivation of the transfer 
matrix T(1) continues to hold in the construction of the transfer matrices T(M) for M > 1. 

The characteristic equation for T(1) is the cubic equation 

- Xl(XZ - 1) +XIX2Z + 2 2  - 23 = 0 (3.14) 

readily solved in closed form, and reproducing the same z-roots as those of D(xl ,  XZ. l/z), 
which we identify as RI ,  R2 and R3. In the thermodynamic limit, from equation (2.8), 
the partition function of the onedimensional system (M = 1) is the largest root R I .  The 
solution R I  (XI, xz) is a well behaved function which increases smoothly with increasing 
values of its arguments. We compute the partial derivatives of RI  with respect to the 
activities and find the properties 

(3.15) 

(3.16) 

The expression for the entropy follows from equation (1.8). 
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Plot of 02' versus 0, 
We introduce dimensionless interaction energy parameters: 

(3.17) PI P2 
ke T keT $1 = logl0xl = - logloe $2 = 10g10x2 = - logloe. 

Figure 2 shows 0; versus 01, with the constant x2 curves labelled by the values of f iz .  For 
f i2  >> 0, the data falls almost along the line 0; = 01. This is justified analytically, since in 
that range R I  ( x I x ~ ) ' ~ ,  and 0; is related to 01 via equation (3.16). At xz = 0 ($2 = -CO), 

there is an infinite nearest-neighbour repulsion and 0; = 0, while 01 increases from 0 to 2/3, 
as follows from equation (3.16). Indeed, the maximum possible coverage occurs by leaving 
one vacant site between two consecutive dimers. For $2 << 0, we observe the data points 
to fall along two segments: the section of the 81-axis between 0 and 2/3, and the section of 
the lime 0; = 301 - 2 where 0, is in the range (2/3,1). The set of data points falling along 
the second segment corresponds to activities in the range ~ 1 x 2  >> 1. Finally, all data points 
fall within the boundary of a triangle whose sides are 0; = 0, 0; = 81 and 0; = 301 - 2. 
Sbuctural ordering occurs at U3 coverage and can be analysed by studying the entropy of 
the system. 

Fwre 2. Plot of the fraction of maximum numkr of nearest neighbours versus the coverage 
for the one-dimensional lattice. 
: .,.v - 
' . ,  .: . i. 
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Three-dimensional plot of S versus 81 and 8; 
This plot is shown in figure 3. The data is distributed on a dome-like surface which has two 
arches, one in the plane 8; = 0 and the other in the plane 8; = 301 - 2. They meet to form 
a cusp at S = 0,O; = 0, = 2/3. The first arch is the entropy curve xz = 0 (& = --CO). 
Its highest point is at x i  = 1 (PI = 0), where the entropy reaches the value S,, = ln(R,), 
with R I  being the largest root of z3 - z2 - 1 = 0. For P2 < -5, the entropy curves merge 
into a single curve consisting of the two arches. The highest point on the second arch will 
be considered later. Finally, the highest point of the dome is found on the curve pi = 0 
with the entropy reaching the value S,, = In(RI), where RI  is the golden ratio [41. These 
results are: 

Table 1. 

a s" 81 0; 

0 0.382245078 0.388508011 0 
1 0.481218250 0.552786405 0211145618 

Furthermore, at xz = 1 (,G2 = 0) we find 

(3.18) 

and the familiar expression for S in terms of 01 follows 141. The first of the two equations 
in (3.18) is a new result which could not have been derived from our previous calculations 
[41. 

For ,& > 0, the CUNS have one maximum asymptotic&ly approaching zero as fiz 
becomes infinitely large. In that limit, we reach the base of the dome where S = 0 and 
e; =el. 

Figure 3 also exhibits intermediate curves for .& = -1, -2 etc, showing a local 
minimum gradually developing into a cusp. This minimum appears at f iz  c -1.23. The 
curve corresponding to 112 = -1.23 is shown on the relevant graphs. All constant pz 
curves, with p? c -5, merge into two arches. 

Entropy as n function of the dimensionless interaction energies 
Figure 4 shows the plot of S versus ,TI and f i z ,  and the planar constant f i z  curves are 
identified. The curve at ,& = -1.23 has a maximum at S = 0.405 and $1 = 0.176, 
followed by a plateau, beyond which the entropy falls off to zero. In the plateau region, the 
entropy remains within 1% of 0.323 for maximum changes in lattice interaction energies 
of 35% and changes in coverage varying from 68.6% to 77.8%. For f i z  < -1.23, a local 
minimum begins to appear; the region between the two peaks on either side of this minimum 
broadens, and becomes almost flat, with S zz 0. When this occurs we are in the region 
of the cusp of figure 3, and the peaks correspond to the highest points of the two arches. 
For P z  < -5, we observe numerically that the second peak occurs at X Z X ~ ' ~  N 1, or at 
interaction energies related by 

pi + 3p2 = 0. (3.19) 

This can be derived analytically. Under the conditions stated above, the solution of 
equation (3.14) is given by 
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I 

.o 

Figure 3. Plot of the entropy versus the coverage and the fraction of the maximum number of 
nearest neighbours for the one-dimensional lattice: 

and the values of 63, & and S follow: 

S = Ina = 0.281 199575. 

(3.21) 

(3.22) 

This value of S corresponds to the highest point of the second arch in figure 3, where 
condition (1.9) must hold. In this region, 8; = 38, - 2 and (Wz/a8i), = 3 showing that 
equation (3.19) follows from equation (1.9). 

4. The transfer matrix T(2) 

A first step in deriving a recursive relation for T(M) in terms of T(1) and T(2) is to propose 
a diagrammatic construction of matrix T(l), shown in~figure 5, and generalize it to T(M). 
The row and column entries of T(1) are labelled by the first cell of the three possible 
restricted lattices. These are the ones for which there is: (1) a vacancy below the first cell 
(circle), (2) the top of a dimer below the first cell, and (3) the top of a dimer occupying the 
first cell; ~ The diagrammatic construction of the (ij) element of T( 1) is based on placing 
the cell of the row entry (i) undemeath the cell of the column entry 0'). When no matching 
is possible between the two states of occupancy, the corresponding matrix element is zero. 
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S 
-2  
-3 
-4 

F i y r e  4. Plot of the entropy Venus the dimensionless interaction energy pmeters  for the 
one-dimensional lalrice. 

This is the case for TIZ,  T,, and T33.  The (1,l) element corresponds to placing a vacancy 
in the cell of the first row entry, which leads to a vacancy-vacancy nearest neighbour. There 
is zero energy associated with placing a vacancy on a lattice site and with nearest-neighbour 
vacancies, and therefore, the added activity is 1; this is the matrix element TII. The (1,3) 
element corresponds to placing the bottom of a dimer in the cell of the first-row entry, 
leading to a lattice-dimer and vacancy-dimer nearest-neighbour interaction. The added 
activities are X I  and 1, respectively, leading to a total activity X I  * 1, and this is  TI^. A 
matching of the cell of the second-row entry placed beneath the cell of the third-column 
entry is possible, leading to lattice-dimer and dimer-dimer nearest-neighbour interactions, 
with an added total activity XI *XI, and this is Tm. Matching between the entries leading 
to T32 is also possible with no added activities, and the corresponding element is 1. These 
rules will be shown to hold in constructing T(2) and higher-order transfer matrices. 

To derive an expression for T(2). we need to identify restricted lattices (labelled t )  
and search for recursive relations among the arrangements A,@, b, N) of q dimers with b 
nearest neighbours on the 2 x N restricted lattices of type t .  

The A I  section of figure 6 refers to the number of arrangements Al(q, b, N) on the non- 
restricted lattice, where all possible occupations of the first row are considered. When the 
right cell is vacant, the left cell can be either vacant or occupied by the bottom of a dimer, 
generating two types of restricted lattices with N - 1 rows. The first corresponds to the two 
cells underneath the first row being vacans this is equivalent to the original non-restricted 
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1 0 9 I o  
L 

Figure 5. The transfer matrix for the one-dimensional problem. 

lattice, since no dimer-dimer interactions can be established with vacancies. The second 
restricted lattice is labelled t = 3, as the ordering is an impoitant factor in constructing the 
transfer matrix recursively. When the right cell of the first row is occupied by the bottom 
of a vertical dimer, the left cell is either a vacancy or is occupied by the bottom of another 
vertical dimer. These diagrams lead to two new restricted lattices, labelled t = 7 and f = 9, 
respectively. The last possible occupancy of the first row is the one for which the cells are 
occupied by a horizontal dimer, leading to the restricted lattice labelled t = 10. The first 
recursive relation is then established 

A i ( q , b , N ) = A i ( q , b , N - I ) + A , ( q -  l , b , N - l ) + A 7 ( ~ - l , b , N - l )  
+Ag(q  - 2 , b -  I ,  N - l ) + A i o ( q  - 1,b, N - 1 ) .  (4.1) 

The As section of figure 6 refers to the number of arrangements A&, b, N )  and exhibits 
two new restricted lattices labelled t = 2and r = 8, respectively, leading to the recurrence 
relation: 

A3(q7 b, N )  = A z ( g ,  b ,  N - 1 )  + As(q - 1, b, N - 1). (4.2) 

The remaining relations are derived in a similar way, and ten restricted 2 x N lattices 
are found with which we associate~ten generating functions G,(xI,x~,Y). Not shown in 
figure 6 are the diagrams leading to the relations for A&, b, N) and A&, b ,  N ) .  The 
recurrence relations among the ten degeneracies provide a set of ten linear equations among 
the Gs, leading to a matrix Q as in equation (3%) depending on x, ,  xz and y. The matrix 
Q provides a transfer matrix, T(2), of rank ten depending only on the activities. Figure 7 
is matrix T(2) with its row and column entries labelled according to the configurations of 
the first row of the ten restricted lattices. The order hierarchy for choosing the state of 
occupancy below the first cell to the far right in the first row of the lattice is: 

(a) a vacancy, or state @ = 1, 
(b) the top of a vertical dimer, or state (I = 2, 
(c) the bottom of a vertical dimer, or state (I = 3, or 
(d) the right end of a~horizontal dimer, or state U = 4, 

Next,  we^ consider the occupancy below the second cell to the far right (also the last, since 
M = 2) in the first row of the lattice. For each of the states designated a = 1.2 and 3, this 
occupancy could be a vacancy, the top of a dimer, or the bottom of a dimer, in this order. 
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. .  . .  . .  . .  
A ,  A ,  A 3  A T  A,  A 10 

Figure 6. Diagrammatic representation of the recursive relations mong ihe occupational 
degeneracies of dimen on the reslricted lattices associated with the 2 x N lattice. 

For the state designated LY = 4, the two cells below the first row of sites are occupied by a 
horizontal dimer. Thus, we have accounted for all ten configurations. As shown in figure 7, 
T(2) is divided into 16 blocks, Bap, where indices (I and fi  each refers to one of the four 
states of occupancy mentioned above. All elements of blocks 812, Ba, &,, 633,  8 3 4  and 
8 4 2  are zero. Blocks Bl, and B21 are equal to T(1). and other relations are 

B13 = ~ 1 8 3 2  B23 = X I X ~ B ~ ~  8% = XZBI~. (4.3) 

The elements of T(2) are products of activities, one or zero, which is always true for any 
T(M). In exactly the same manner as was done for T(1). the diagrammatic construction of 
matrix element F j  (2) follows from placing the cells of the row entry (i) underneath the cells 
of the column entry ( j ) ,  where i and j run from 1 to 10. The element c,(Z) is zero when 
no matching is possible, otherwise it is a product of any added activities. When matching 
is possible with no added activity, then Ti,@) = 1. Therefore, there is no further need to 
investigate degeneracies for lattice width greater than 2 in order to derive the corresponding 
transfer matrices. 



Structural ordering of interacring dimers on a square lattice 6859 

Figure 7. The vansfer matrix for the 2 x N lattice 

A larger number of configurations would have been  necessary if we had originally 
assigned a non-zero energy for vacancy-dimer and vacancy-vacancy nearest neighbours. 

5. The transfer matrix T(M)  

The generalization to M > 2 is based on dividing the transfer matrix T(M) into 16 blocks 
(see figure 8). according to the four states of occupancy just underneath the cell furthest 
to the right on the first row of the lattice, as done for 'M = 2. The matrix entries are 
labelled by the drawings of these configurations. The rank D(M) of T(M) is the number 
of restricted lattices. For each of the three states of occupancy below the first cell to the 
far right, a = 1, 2 or 3; the total number of restricted lattices is D(M - 1). When the state 
of occupancy is a = 4, the number of restricted lattices is D ( M  - 2). This establishes the 
relation 

D ( M ) = . 3 D ( M - l ) + D ( M - Z )  (5.1) 

with the initial conditions D(0) =' 1 and D(1) = 3. 
Block matrices 8, with a and ,9 taking the values 1, 2 or 3 are all square matrices 

having the same rank, D(M - 1). The block matrix Ba is also a square matrix and its rank 
is D(M - 2). The blocks Ba4 are D(M - 1) x D(M - 2) matrices, and blocks 848 are 
D(M - 2) x D ( M  7 1) matrices. By placing the cells of &e row entry (a) underneath the 
cells of the column entry (PI, the matching of the configurations allows one to obtain the 
general features of T(M)  as indicated on figure 4, namely, 

B I I  = 621 = T(M - 1) BQ = P(M - 1) (5.2~) 

(5.24 
(5.2d) 

8 I 3 = n l P ( M - 1 )  BU = xIxzP(M - 1) ~ ~ 8 . ~  = x ~ x ~ P  (M - 2) (5.26) 
Bu = K(M - 1) 8% = x i ~ z K ( M  - 1) 
8 4 1  = L(M - 2) 843 = xlxzJ(M - 2). 



T (M) 
6860 A Phares et al 

Figure 9. Recursive construction of the P matrix. 
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All other block matrices are zero because no matching is possible. 
Assume that we know the transfer matrix T(M - 1) associated with the (M - 1) x N 

lattice. According to the general features indicated by equations (5.2), this requires the 
knowledge of matrices T(M - Z), P(M - 2). K(M - 2), L(M - 3) and J(M - 3). This is 
not sufficient to construct the matrix T(M),  since we do not know P(M - I), K(M - l), 
L(M - 2) and d(M - 2). However, by inspecting the T matrix for M = 2, we find the 
initial values: 

1 0 x*xz 

0 xz (5.3) 
P(0) = 1 P(1) = [ 1 0 x g ; ]  K(l) = [a ]  
J(0) = [ l  0 x i x i ]  L(0) = [1  0 ~ 1 x 2 1 .  

Higher-order P, K, J and L matrices are obtained recursively, making use of the 
diagrammatic construction introduced above. 

The matrix P(M - 1) corresponds to the row entry with the first cell to the far right 
in state a = 3, and to the column entry with the first cell to the far right in state fl  = 2. 
Figure 9 shows that the P manix may again be divided into 16 block matrices. The four row 
and column entries of these new blocks correspond to the four possible states of occupation 
below the second cell from the far right. Ten of these block matrices are square, nine of 
them of rank D(M - 2) and the last of rank D(M - 3). The remaining block matrices 
are of the K, L or J types. Again, the diagrammatic construction enables one to obtain 
the structure of the block matrices making up P(M - 1). The results presented in figure 9 
show that P(M - 1) is constructed from the knowledge of matrices T(M - 2). P(M - 2), 

K(M-1) 

d---) 
D(M-2) 

Figure 10. Recursive construction of lhe K matrix. 
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P(M - 3). K(M - 2), L(M - 3) and J(M - 3). In this manner, the block matrix P(2) 
which appears in the expression of T(3) is given in terms of TU), P(1), P(O), K(1), L(0) 
and J(0); all these are listed in equation (5.3). 

The constructions of K(M - 1). L(M - 2) and J(M - 2) are presented in figures 10, 
I1 and 12, respectively; this completes the recursive construction of the transfer matrix. 

L (M-2) 

4 _ _  
DIM-21 D(M-2) D(M-21 DIM-3) 

Figure 11. Recursive conswcfion of the L matrix. 

J (M-2) 

Figure U. Recursive conswction of the J matrix. 

6. Numerical results for lattice widths M = 2, 3, 4 and 5 

The rank of the transfer matrices are 10, 33, 109 and 360 for lattice widths M = 2, 3, 
4 and 5, respectively. Computer-programming the recursive relations is the only practical 
way of obtaining these matrices. For a given M and the numerical values of the activities 

and x2, the largest eigenvalue of the transfer matrix, RI  (XI, x2) = Roo. was determined 
using EISPACK on the Cray C90 at the Pittsburgh Supercomputing Center.~As follows f” 
equations (1.6)-(1.8) and (2.8), the entropy at these activities is 
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The derivatives of the eigenvalue with respect to the activities at the evaluation point 
(xl. xz) are computed numerically by evaluating the transfer matrix at eight neighbouring 
evaluation points ( x l f h l ,  X Z ) ,  ( X I ,  x z j z h ~ ) ,  (x112ht. x2) and ( x ~ . x z * ~ ~ z ) .  For sufficiently 

 small values of hl and~hz,the corresponding largest eigenvalues, Rll .0 .  Ro,i t ,  Riz.0 and 
Ro.iz are computed again using EISPACK and the derivatives arcapproximated by: 

The quantities hl and hz were~adjusted to insure that our final results were accurate to 
. ,  ~. six significant figures. 

Plot of 8; versus 81 
The fraction 8; of the maximm'number of'nearest~neighbours is a normalized quantity 
equd to 8, only for M = 1, since 

~ ~ 

Figures 13, ~14, and 15 are the plots of 8; versus 81, for M = 2, 3, and 4, respectively. The 
data points for given values of xz are distributed along curves labelled by /1z. For /1z > 0, 

0 

1.0 I 

Figure 13. Plot of the fraction of the maximum number of nearest neighbours versus the 
coverage for the lattice of  width M = 2. 
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the curves approach an upper boundary made of the line 8; = 81, as in the one-dimensional 
case. For ,E2 -i 0, the C U N ~ S  approach a lower boundary made of three segments for 
M = 2, and four segments for M = 3 and 4. In all three cases, one of these sections is the 
portion (0, ID) of the 81 axis, and the remaining segments are portions of the lines whose 
equations are numerically determined and listed in table 2. The plot 0; versus 81 for M = 5 
shows the existence of two energy ranges, -7 i ,E2 e -3 and -oo,,Ez < -15, where 
the points fall along the portion (0, 1/2) of the @-axis, and along either three or four other 
segments, as shown in table 2 Figure 16 shows the data collected for ,E2 = -5, -10, and 
-20 in the entire range of possible coverages. Figure 17 is an enlargement of figure 16 in 
the range 0.58 < 81 < 0.62 which shows a noticeable change in the lower boundary: the 
points for ,E2 = -5 lie on a straight line, while those for ,E2 = -20 lie on two straight lines 
intercepting at 81 = 315. In all cases considered, the shuctural ordering expected to occur 
at the vertices of the lower boundary are analysed by studying the entropy of the system. 

Cusps in the entropy curves and energy changes dour  the cusps 
For M = 1, we presented the 3D plot of S versus 6'1 and 0;. Figure 18 is an example of 
the projection of the entropy surface onto the S versus 01 plane in the case M = 4 which 
exhibits four arches and three cusps. The cusps correspond to the vertices of the lower 
boundary mentioned above. The corresponding data for M = 5 are presented in figure 19 
with .L% = -5, -10 and -20. This figure shows a new cusp at the 3/5 coverage developing 
between two cusps already present at ,Cz = -5. This development was not observed in 
any previous case. We order the cusps by increasing values of the coverage and summarize 

, , ,  1.0 , m 

Pigure 14. Plot of the fraction of the maximum number of nearest neighbours versus the 
coverage for the lanice of width M = 3. 



1.0, 1 

0.7 

0.5 

Fwre 15. Plot of the fraction of the maximum number of nearest neighbours versus the 
coverage for the lattice of width M = 4. 

their pertinent features in table 3. In aII cases, the first arch is the x2 = 0 curve (,C* = --CO) 

with 0; = 0. For --03 c ,%2 c -15, thq data show all the constant fi2 curves merging 
into a single curve consisting of the 3, 4, dr 5 arches, depending on the value of M. The 
pertinent features of the highest points of the arches are listed in tables 3 and 4. 

At a cusp, the entropy is not always zero; however, it takes a tremendous amount of 
lattice interaction energy to change the ordyr of the system. As an example of how the 
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".- 
0.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 0.9 1.0 

81 

Figure 16. Plot of the fraction of the maximum number of nearest neighbours versus the 
coverage for the lattice of width M = 5. 

entropy varies with the energy parameters, figure 20 gives the plot of S versus f i z  and 
@2. for M = 4, and is the analog of figure 4. Here, the data points at constant f i 2  are 
planar, and, for decreasing negative values of 112, are on curves exhibiting three valleys 
of increasing width, corresponding to the cusps of the plot of S versus 6,. Consider the 
constant 112 curves for sufficiently repulsive dimer-dimer interaction. In that range, the 
curves of 6; versus 61 are made of successive segments having different slopes, and the 
end points of any of these segments correspond to two consecutive cusps in the entropy 
curves. A local maximum of the entropy occurs between the two cusps when the energies 
are related according to equation (1.9). Thus, along a given segment mentioned above, the 
energies are related according to 

Before the local maximum in the entropy y is negative, at the maximum it is zero, and 
after the maximum it is positive. At a point on a constant ,G2 curve located at the left and 
nearby a cup ,  the energies are related according to an equation having the same fonn as 
(6.7) and with y positive. At a point on the same curve but to the right of the cusp and 
with the same entropy, the energies are related in a similar way but with y negative. Thus, 
in the vicinity of a cusp where the entropy i s ~ a  local minimum, a given small change in the 
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Figure 17. Enlqement of a portion of figure 16. 

entropy changes AF, D in the lattice interaction energy by 

Respectively, right and left refer to the evaluation of the associated quantities just afer and 
just before the cusp. The derivatives are readily obtained from table 2 and equation (6.4). 
and, since %R is positive and ytight is negative, [yle* - ysm] = Ay is a positive quantity. 
Equation (6.6) has been verified numerically for every cusp and for all values of the lattice 
width M under study. We obtained the values of Ay corresponding to' changes in the 
entropy less than 0.5% of its minimum value at the cusp, when this minimum is not zero, 
and less than 1 x when this minimum is zero. For the cusp at 112 coverage, Ay = 27.5, 
29, 11.8 i d  8.3 for M = 2, 3, 4 and 5, respectively; similarly, for the same values of 
M at 2/3 coverage, Ay = 27, 6.3, 11 and 3:7, respectively; for the cusp at 4/5 coverage, 
Ay = 28.9 and 10.3 for M = 4 and 5; finally for the cusps at 3/5 (M = 5) and 6i7 ( M  = 3) 
coverages we have Ay = 9.3 and 35.3, respectively. 

7. Cusp configurations and the two-dimensional problem 

Structural ordering at the cusps requires a repetitive pattem meeting the conditions given 
by the values of 01 and 0; listed in table 3. Assume that this pattem occurs on a finite 
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0.7 , , , , , , , 

Figure 18. Plot of the entropy versus the coverage for the lauice of width M = 4. 

section, M x N ,  of the lattice. For that section, there are intemal and external nearest 
neighbours. To avoid double counting, external nearest neighbours are those made across 
one of its boundaries. Let B be the maximum number of nearest neighbours at full coverage 
of this section. Then, given 81 and Si, the number q of dimers and the number b of nearest 
neighbours for that section are 

6 =3(MN/2) - N q =6’1(MN/2) b = @ ; B .  (7.1) 
In the subsequent analyses, we consmct the lattice configurations prevailing at the cusps for 
M < 5, observe that cusp configurations for higher values of M are made of configurations 
of lower values of M, extrapolate these configurations to lattices with M 5, and obtain 
the existence of several cusps on the infinite two-dimensional lattice. 
Cusp at 81 = 112 
The condition to be met is 8; = 0 for M = 2, 3 ,4  and 5, and, from equation (7.1), b = 0 
and q = M N/4. A convenient choice for N is 2 for M even, and 4 for M odd. All possible 
configurations are shown in figure 21 for M = 2 . 3 . 4  and 5. 

For M = 2, there are four possible configurations of 2 x 2 sections each having two 
dimers and no nearest neighbours; these are called H, H’, V, and V’, with the primed 
configurations being the mirror image of the unprimed configurations. To complete the 
infinite M = 2 lattice, we consider a chain of these sections placed on top of one another, 
The sequencing selection NICS are: 

H + H, H‘, V, V’; H‘ + H‘; V + V’, H’; V’ + V, H’. 
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Figure 19. Plot of the entropy versus the coverage for the lauice of width M -5. 

From these rules, we may c o n s t ~ c t  all the cusp configurafions. In all subsequent discussions, 
we will generate the sequencing rules leading to the cusps configurations. Entropy is 
related to probability (-P In P), therefore, when the number of 'cusp c o n f i g d o n s  is 
finite, this requires the entropy at the cusp to be zero, since there is an infinite number 
of total configurations. But an infinite number of cusp configurations, which is fhe case 
here, does not necessarily mean that the entropy is non-zero. Consider the lattice 2 x N, 
with the number of cusp configurations~finite 'as is the total number o€ configurations. As 
N -+ 00, both numbers become infinite, their ratio approaches zero, and the entropy is 
zero, as verified numerically. 

For M = 3, there are 12 possible configurations of 3 x 4 sections each. having three 
dimers and no nearest neighbours. With label j running from 1 to 5, theseconfigurations 
are called 6. q. V, and V', with the pimed~configurations being the mirror image of the 
unprimed configurations. The sequencing selection.mles are: 

HI + H;: H; -+ HI; H2 -+ Ht, H;, H3* &, V' 
Hi -+ H;,  Hz, V' ,  Hi, Hi; H3, + Hi; HA + HI 
H4 -+ V'; Hi -+ V'; Hs -+ I€;; H; -+ Hi 
V -+ V ,  HI,  H;, Hs,  H;; V' + V'. 

F0r.M = 4, there are four possible configurations, FI, H', V and V', of 4 x 2 sections 
containing two dimers and no nearest neighbours. The sequencing selection rules are: 

H -+ H, H' + H', Y -+ V', V' -+ V 

>r - , -10 :: 
i .:.= :..4 

. y - m x i  i 
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Figure 20. plot of the entropy v a u s  the dimensionless interaction energy parameten for the 
lanice of width M = 4. 

Table 3. Logtion of the cusps observed in the entropy curves for lattices of widths M = I,  
2.3.4 and 5 as obtained numesidy. Some of the gcaphical represenlatiom of these cusps are 
shown in figures 3, 18 and 19. for M = 1.4 and 5, respectively. 

e, = 112 8, = 315 e, = 213 e,  = 415 el = 617 - 
s e; s e; s e; s 0; S e; 

M = l  0 0 
M = 2  0 0 0 116 
M = 3  0 0 0.1461 4121 0.0330 4/7 

M = 5  0 0 0.0191 3126 0.1283 8/39 0.1346 6/13 
M = 4  0 0 0.1097 1/5 0 11/25 

and we are locked into two possible configurations. Finally, for M = 5 there are. two 
possible configurations, V and V', with the sequencing selection rules 

v -.+ v, V' + V'. 

Cusp configurations for M = 4 and 5 are. obtained by juxtaposing cusp configurations 
found for M = 2 and 3. Recursively, lattices with even and odd widths can be shown to 
have configurations composed of those for M = 2 and those for M = 2 and 3, respectively. 
A cusp will always occur at 1/2 coverage with zero entropy. 
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V '  H'  

M = 3  

V 

H H '  

Figure 21. Cusp configwatianr of subsactions of the lattices of widths M = 2, 3. 4 and 5 at 
1D coverage. 

Cusp at e, = 213 
The condition to be met is 0; = 0, 116, 4/21, 175, and 8/39 for M = 1, 2, 3,  4, and 5, 
respectively, and the relevant configurations are shown in figure 22. 

The case M = ' I  has been discussed earlier. For M = 2, equation (7.1) yields 2 x N 
sections having 2 N j 3  dimers~and N / 3  nearest neighbours, and we choose N = 3. There 
are two types of 2 x 3 sections, V and V', each having two dimers and one nearest 
neighbour. Note that these configurations are the juxtaposition of those found for M = 1. 
The sequencing selection rules are, 

v + v. V' + V' 

there are two possible configurations, and the entropy is zero, as verified numerically. 
For M = 3, equation (7.1) yields 3 x N sections having N dimers and 2N/3  nearest 

neighbours, and we choose N = 3 leading to three dimers and two nearest neighbours per 
section. Two possibilities have to be considered. A section may have two internal and no 
extemal nearest neighbours; or, it may have one internal and one external nearest neighbour. 
There are four H-types and two V-types 3 x 3 sections with one and two internal nearest 
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\I \f 5 M = 3  

M = 4  

Eigure 22. Cusp configurations of subsections of the ikttices of widlhs M'= 1,2, 3, and 4 at 
213 coverage. 

neighbours, respectively. Here, only the V-type configurations are juxtaposed M = 1 
configurations. The sequencing selection rules are 

H;,Hx + HI, Hz, V; Hi, H; + H;, H; 
V -Y V ;  V' --t V', Hi, H;. 

There is an infinite number of possible configurations at this cusp but this is not sufficient 
to prove that the entropy is not zero. 

For M = 4, equation (7.1) yields 4 x N sections having 4 N / 3  dimers and N nearest 
neighbours, and we choose N = 3,  leading to four dimers and three nearest neighbours. 
Here again there are two possibilities: three intemal and no extemal nearest neighbours; or 
two intemal and one extemal nearest neighbour. There are five H-types of 4 x 3 sections 
with two intemal nearest neighbours and their mirror images, and one V-type section with 
three intemal nearest neighbours and its mirror image. Alf the configurations are made of 
the juxtaposition of those found for M = 1 and 3; only the V-type can be viewed as made 
of those for M = 1.. The sequencing selection rules are 

HI + HI. H3, H i ,  H5; HZ -Y H2, Hi, H4, Hi 

V --f V .  Hi; V'+ V', Hi. 
H3. H;, H i ,  H; -Y ff;, v; H4,  H;, Hi, Hs 3 H:, V' 
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The same comments ,made for M = 3 at this cusp continue to be valid. 
A similar analysis can be done for M = 5  and generalized to any M .  As for the cusp 

at 112 coverage, we find that cusp configurations for M z 5 can be-obtained by juxtaposing 
those. found for M = 1 and 3. In particular, there will ,always 'be V-type configurations 
which are made of those for M = 1. It suffices to look at the V-type configurations: as M 
increases by one unit, so does the number b of nearest neighbours, starting with b = 0 for 
M = 1. Thus, using equation (7.1). we predict for any value of M a cusp at 2/3 coverage 
 with^ 

2 M - l  
3 3M-2'  

e;=-- 

The entropy is zero only for M = 1 and 2 since there is a finite number of configurations, 
but not for M = 3, 4, and 5. As in other calculations [4,5], the values of S at this cusp 
are expected to oscillate with M. Preliminary results for M = 6 indicate a fast damping 
of these oscillations. and an extrapolation to the infinite two-dimensional lattice predicts a 
cusp at 213 coverage with 0; = 219 and an entropy of 0.162. 

Cusp at 01 = 4 f 5 
At 415 coverage, a cusp is found at M = 4 and 5, with 0; = 11/25 and 6/13. respectively. 
The relevant configurations are shown in figure 23. 

Equation (7.1) with M = 4 and the corresponding values of 01 and 0; yields 4 = ( 8 / 5 ) N  
and b = (1 1/5)N. Choosing N = 5 leads to a total of eight dimers to be distributed on 
4 x 5 sections with 11 nearest neighbours. This latter number turns out to be the lowest 
possible number that one may have on 4 x 5 sections covered with eight dimers, and there 
are two ways this can be achieved. The corresponding two sections are called H and H' 
and have nine internal and two external nearest neighbours, and the sequencing selection 
d e s  are: 

~ ~ 

H + H ;  H' + H'. 

There are two possible configurations achieving the conditions at this cusp, and the entropy 
is zero as verified numerically. 

The case M = 5 is discussed in a similar way and we show in figure 23 two H-type 
sections from which two possible configurations are identified: sections H and H' can be 
arbitra~ily connected by a one-unit height section containing two dimers separated by a 
vacancy. TI& partially justifies a non-zero entropy at this cusp. 

The configurations for M = 5 cannot be obtained from those for M = 4. Those 
for M =4 can be viewed as a juxtaposition  of^ two 2 x 5 subsections each containing 
four dimers (figure 23). Each subsection has four internal nearat neighbours, one nearest 
neighbour shared with the other subsection, and another nearest neighbour at its top or 
bottom boundary. We can apply the same logic goveming the generation of the cusps 'at 
IQ and 2l3 coverage. A cusp at 415 coverage is expected to occur at higher values of M 
with configurations made of those at M = 4 and 5. 

For a given cusp coverage, the number of nearest neighbours is at its minimum. With 
415 coverage, the number q of dimers is determined and a configuration is obtained by 
arranging the dimers with the l e k  number of nearest,neighbours. For M = 6,  it is only 
possible to use M = 4 configurations made of the 2 x 5 subsections identified above, To 
keep nearest neighbours at their minimum, there is one shared nearest neighbour at one 
interface and three at the other. This is generalized to any even width M > 6. The number 
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M = 4  
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M = 6  
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I 
Figure 23. CUSP contiguralions of subsections of ihe lattices of widths M = 4. 5,  6 and 7 at 
41.5 coverage. 

of 2 x 5 subsections is M/2, each having one extemal and four intemal nearest neighbours. 
They have (M/2)  - 1 shared boundaries; at the first boundary there is one shared nearest 
neighbour, and at the remaining (M/2) - 2, there are three. This yields a total number b 
of nearest neighbours: 

b = 5(M/2) + 1 + 3 [ ( M / 2 )  - 21 = 4M - 5. 

With N = 5 and h given by this equation, equation (7.1) yields 

4M-5 8' - - 
2 -  3M - 2 '  

4 
8, = 5 ' ' (7.3) 

Preliminary results for M = 6 show equation (7.3) to hold with no visible cusp. On the 
infinite lattice, we predict 8; = 8/15 at 4/.5 coverage, with no compelling reason to believe 
that it corresponds to a cusp. 

Configurations for lattices with odd widths M z 5 can be obtained by juxtaposing 
sections with configurations found for M = 4 and 5. Figure 23 shows a configuration for 
M = 7 composed of five sections found for M = 5 and two right half-sections for M = 4. 
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The pattem repeats in 7 x 10 sections. In general, the pattem repeats in M x 5 sections 
for M even and M x 10 sections for M odd, and the value of 0; in both cases is given by 
equation (7.3). 

Cusps at 01 = 315 and 617 
For M = 3, a cusp is found at 617 coverage and 0; = 417, and for M = 5, a cusp is 
found at 3/5 coverage with 0; = 3/26. Some configurations associated~ with these cusps 
are shown in figure 24. For M = 3, there are two Configurations with sequencing selection 
rules HI,  H2 + HI, Hz, leading to an infinite number of cusp configurations. For M = 5, 
the non-zero entropy requires the existence of several configurations, but we were able to 
find only one. The cusp at .6/7 coverage does not show up for M = 4 and 5, therefore we 
cannot make any predictions. As for the cusp at 315 coverage, no prediction is possible 
until numerical results are available for M = 6. 

H, H, 
M = 3  

e, = 6/7 

ego = 417 

M = 5  

Fwre 24. Cusp mnfigurations of subsections of the lattices 
of widths M = 3 and 5 at 6,'l and 315 coverages, respectively. 

S. Summary 

The construction of the transfer matrix for the problem of dimers with nearest-neighbour 
interactions on an M x N square lattice is an essential step in the study of the thermodynamic 
properties of such a system. This matrix was constructed recursively from the knowledge 
of the matrices for M = 1 and M = 2 (figures 1.5-12). Its largest eigenvalue raised to the 
power 1/M is the partition function of the system in the thermodynamic limit. The transfer 
matrix for the lattice of width M is divided into block matrices, which can be further divided 
in a similar way, showing a fractal-like structure. This means that larger lattices include 
information contained in their constituent smaller lattices. 

Eigenvalues of the transfer matrix can be obtained analytically only for the one- 
dimensional problem. We used EISPACK on the Cray C90 to cany out the numerical 
calculations. Computational difficulties presently preclude calculations for M greater than 
5. We varied the interaction energies and obtained the corresponding values of the coverage 
01, the fraction 0; of the maximum number of n m t  neighbours and the entropy S. The 
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plots 6; versus 8, (figures 2, 13-16) show that data points fall within a polygon. Beyond 
a certain repulsive dimer-dimer interaction energy (/i2 CO), the points lie on the lower 
boundary of the polygon (table 2). whose vertices correspond to cusps on the constant-,22 
curves in the plot of S versus 6'1 (figures 3, 18 and 19). We find 1, 2, 3, 3, and 4 cusps for 
M = 1, 2, 3, 4, and 5, respectively. The pertinent characteristics of the cusps have been 
obtained and described, including coverage and fraction of the maximum number of nearest 
neighbours (table 3), energies (figures 4 and 20) and lattice configurations (figures 21-24). 
In particular, the amount of lattice energy required to break the structural ordering at the 
cusp is found to be linearly related to the repulsive energy between dimers (equation (6.6)). 
The local maxima of the entropy between cusps have been obtained and analysed (tables 4 
and 5). 

Table 4. Characteristics of the local maxima in the entmpy curves for lattices of width M = 2, 
3 and 4. and for values of the dimer-dimer interaction energy parameter in the range c 2  < -5. 

Max. # l  # 2  # 3  # 4  
~ 

PI = o  LLI = -2P2 PI  = - 5 M  

S 0.3664 0.1406 0.3824 
M = 2  81 0.3059 05885 0.8618 

8: 0 0.0885 0.6545 

PI = o  PI = - 8 ~ 2  3Pl= -14j~z PI = - 7 ~ 2  

S 0.3548 0.1900 0.2099 0.2749 
M = 3 HI 0.2906 0.6116 0.7410 0.9549 

H; 0 0.1276 0.3392 0.8647 

PI = 0 PI = -3P2 ZPI = -9P2 PI = -7Pz 
~~ 

S 0.3536 0.1734 0.1497 0.3269 
M = 4  HI 0.2848 0.6121 0.7081 0.9364 

t!; 0 0.1346 0.2746 0.8219 

Table 5. Characteristics of the local maxima in the entropy curves for the lattice of width M = 5 
and for values of ule dimer-iimer interaction energy paramerer in the ranges -7 < p~ < -3 
and pz < -15. 

M = 5  o<fllc; $ < e , < $  ;<e l ,c ;  $ < e l < $  4 3 $ e 1 < ~  

PI = o  5 ~ ~ 1  = - 1 6 ~ ~ 1  PI = -5Pl &I = - 7 ~ 1  

S 03511 0.1408 0.2084 0.3584 
-7<,& < -3 81 0.2791 0.6370 0.7404 0.9220 

e; o 0.1669 0.3469 0.79W 

P l = o  01=-3LLl 2@1=-7LL1 ILI=-~PI PI=-~PI 

S 03511 0.05.08 0.1293 0.2082 0.3584 
< -15 81 02791 0.5€03 0.6642 0.7404 0.9220 

fl; 0 0.0696 0.2019 0.3467 0.7900 

The cusp at 2i3 coverage occurs for all values of M, and the cusp at 1/2 coverage 
occurs for M > 1. Cusp configurations on a lattice of width M are composed of those 
found in lattices of smaller width (figures 21-22), keeping the number of nearest neighbours 
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at its minimum. This may be due to the fractal-like structure of the transfer matrix. Using 
this principle as a guide for any M, we predict the existence of at least two cusps at ID 
coverage and 6; = 0, and at 2/3 coverage and 6'; given by equation (7.2). At 415 coverage 
we predict the value of 6; to be given by equation (7.3) for M > 3. Taking the limit 
M + W. our speculation predicts for the infinite two-dimensional lattice the existence of 
at least two cusps; one at ID coverage, no nearest neighbours, and zero entropy; and the 
other at Zl3 coverage, 6'; = 219, and an entropy of 0.102. In addition, we also predict that, 
at 415 coverage, 0; = 8/15. 

Further studies must be carried out for M > 5 to determine whether the cusps observed 
repeat and whether new cusps develop at higher values of M. 
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